hydroxy- δ -cadinen-15-oate TLC of the mixture of 1a and 2a (Et₂O-petrol, 3 2) gave 70 mg 2a (R_f 0 70). Known compounds were identified by comparison of the 400 MHz ¹H NMR spectra with those of authentic material and by co-TLC

Methyl 2β-hydroxy-δ-cadinen-15-oate (1a) Colourless oil, IR $v_{\rm CCL_4}^{\rm CCL_6}$ cm $^{-1}$ 3560 (OH, hydrogen bonded), 1710, 1655 (C=CCO₂R), MS m/z (rel int) 264 173 [M] (24) (calc for C₁₆H₂₄O₃ 264 173), 246 [M-H₂O] (20), 203 [246-CHMe₂] (80), 187 [246-CO₂Me] (100), 176 [246-H₂C=CHCHMe₂, RDA] (30), 13C NMR (C₆D₆, C-1-C-15) 33 2 t, 65 4 d, 124 0 s, 144 4 d, 41 0 d, 44 0 d, 21 7 t, 34 6 t, 129 6 s, 133 0 s, 27 0 d, 19 1 q, 21 5 q, 15 7 q, 167 5 s, 51 3 q (OMe)

Preparation of 1s from the acetate To 23 mg 2β -acetoxy- δ -cadinen-15-oic acid in 2 ml MeOH, 0.5 ml 2 N KOH was added After 2 hr the crude acid was esterified with CH₂N₂ TLC (Et₂O-petrol, 4.1) gave 16 mg 1s (R_f 0.60) identical with the methyl ester obtained from the natural product (1 H NMR and co-TLC)

Methyl 2β-methoxy-δ-cadinen-15-oate (2a) Colourless oil, IR $v_{\text{col}}^{\text{CCL}}$ cm⁻¹ 1710, 1650 (C=CCO₂R), MS m/z (rel int) 278 188 [M]⁺ (11) (calc for C₁₇H₂₆O₃ 278 188), 260 [M - H₂O]⁺ (7), 246 [M - MeOH]⁺ (51), 235 [M - CHMe₂]⁺ (9), 203 [235 - MeOH]⁺ (100), 187 [246 - CO₂Me]⁺ (91), 176 [246 - H₂C=CHCHMe₂, RDA]⁺ (45), 145 [187 - C₃H₆]⁺ (76)

Methyl 13-hydroxy-10α-peroxy-cadina-3,9(14)-dien-15-oate (3a) Colourless oil, IR $v_{max}^{CCl_a}$ cm⁻¹ 3600 (OH), 1710 (C=CCO₂R), MS (CI, isobutane) m/z (rel int) 297 [M+1]⁺ (62) (calc for C₁₆H₂₄O₅+1), 279 [297 - H₂O]⁺ (100), 263 [297 - H₂O₂]⁺ (57), 247 [279 - MeOH]⁺ (38), EI 262 [M - H₂O₂]⁺ (21), 231 [262 - OMe]⁺ (32), 203 [231 - CO]⁺ (42), 61 (100),

$$[\alpha]_{24^{\circ}}^{\lambda} = \frac{578}{-10} \frac{546}{-19} \frac{436 \text{ nm}}{-63} \text{ CHCl}_3, c = 0.3$$

Methyl 13-hydroxy-9α-peroxy-cadina-1(10), 3-dien-15-oate (4a) Colourless oil, IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm⁻¹ 3600 (OH), 1720 (C=CCO₂R), MS (CI, isobutane) m/z (rel int) 297 [M+1]⁺ (10), (calc for C₁₆H₂₄O₅ + 1), 279 [297 - H₂O]⁺ (21), 263 [297 - H₂O₂]⁺ (14), 247 [279 - MeOH]⁺ (8), 209 [297 - C₅H₁₂O]⁺ (100), EI 262 [M - H₂O₂]⁺ (2 5), 230 [262 - MeOH]⁺ (40), 61 (100)

REFERENCES

- 1 Bohlmann, F, Gupta, R K, King, R M and Robinson, H (1982) Phytochemistry 21, 2982
- 2 Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1979) Phytochemistry 18, 1675
- 3 Bohlmann, F, Zdero, C, King, R M and Robinson, H (1984) Phytochemistry 23, 1979

Phytochemistry, Vol 24, No 5, pp 1103-1104, 1985 Printed in Great Britain 0031-9422/85 \$3 00 + 0 00 © 1985 Pergamon Press Ltd

EUDESMANOLIDES FROM ARTEMISIA JUDAICA

MOHAMED A METWALLY, JASMIN JAKUPOVIC, MANSOUR I YOUNS* and FERDINAND BOHLMANN

Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, W. Germany, *Department of Chemistry, Faculty of Science, University of Assuit, Egypt

(Received 6 August 1984)

Key Word Index—Artemisia judaica, Compositae, sesquiterpenes, eudesmanolides

Abstract—The aerial parts of Artemisia judaica afforded in addition to known compounds a hydroperoxide corresponding to vulgarin as well as an isomer of the latter. The configurations of these lactones have been established by NOE difference spectroscopy

The aerial parts of Artemisia judaica L have been investigated previously [1-3], and we have studied now material collected in Egypt In addition to tauremisin (= vulgarin, 1) [4, 5] isolated previously from this species [1, 2], we obtained the isomer 3 and the hydroperoxide 2 and in addition ethyl cinnamate, α -pinene, chrysanthenone, camphor, piperitone, verbenol and the hydroperoxide 4 isolated so far only from Artemisia inculta [6] The structure of 2 could be deduced from the spectral data of the product obtained by triphenyl phosphine-reduction which were identical with those of 1 The spectral data of 3 (Table 1) were close to those of 1 However, the chemical shifts of H-14 and H-15 differed characteristically. NOE

difference spectroscopy with both 1 and 3 clearly indicated the configuration at C-4 While 1 gave clear NOEs between H-14 and H-15 and H-6, the isomer 3 showed NOEs between H-14 and H-6 as well as between H-15 and H-5 and H-3. The configuration of 3 has been assigned previously for a lactone named barrelin [7]. Comparison of the 13 C NMR data, however, show that this lactone most likely is identical with vulgarin though the mp and the optical rotation differ. The published 13 C NMR data of 1 [8] differ only in the chemical shift of C-14 which was erroneously assigned (δ 22.7 is the value of C-8 and not of C-14 which is 19.7). The 13 C NMR data of 1 and 3 show some clear differences. In particular, the C-15 signal is

1104

Table 1 ¹H and ¹³C NMR spectral data of compounds 1-3 (400 MHz, CDCl₃, TMS as int standard)

	1*	2	3		1	3
H-2	5 90 d	6 00 d	5 87 d	C-1	201 6 s	203 1
H-3	6 61 d	674d	6 50 d	C-2	1257d	125 3
H-5	2 43 d	282d	202d	C-3	151 7 d	150 2
H-6	4 16 dd	4 12 dd	4 33 dd	C-4	70 1 s	68 2
H-7	1 67 dddd	1 66 dddd	1 66 <i>dddd</i>	C-5	54 7 d	510
Η-8α	1 98 dddd	1 98 dddd	20m	C-6	79 6 d	79 2
H-8 <i>β</i>	1 56 dddd	1 55 m	1,61	C-7	52 5 d	52 3
Η-9α	1 47 ddd	1 47 m	} 1 51 m	C-8	22 7 t	22 8
Н-9β	2 03 ddd	2 04 ddd	20m	C-9	34 3 t	32 5
H-11	235q	2 33 dq	233dq	C-10	46 2 s	459
H-13	1 23 d	1 21 d	1 58 d	C-11	40 6 d	40 1
H-14	1 19 s	1 22 s	1 31 s	C-12	178 1 s	179 0
H-15	1 54 s	1 47 d	1 58 s	C-13	12 4 q	125
				C-14	197q	20 6
				C-15	23 8 a	31 7

*Chemical shift slightly varying by concentration

J (Hz) 2, 3 = 10, 5, 6 = 11, 6, 7 = 10, 7, 8 α = 3 5, 7, 8 β = 12, 7, 11 = 12, 8 α , 8 β = 13, 8 α , 9 α = 3 5, 8 α , 9 β = 3 5, 8 β , 9 α = 12 5, 8 β , 9 β = 3, 9 α , 9 β = 14, 11, 13 = 7

shifted downfield, most likely due to its quasi-equatorial orientation

EXPERIMENTAL

The air-dried aerial parts (220 g, collected from Wadi Hof, Egypt, March 1984) was worked-up in the usual fashion [9] CC fractions were as follows 1 (petrol), 2 (Et₂O-petrol, 1 20), 3 (Et₂O-petrol, 1 10), 4 (Et₂O-petrol, 1 4) and 5 (Et₂O and Et₂O-MeOH, 10 1) TLC of fraction 1 (petrol) gave 50 mg α -pinene and of fraction 2 (Et₂O-petrol, 1 15), 3 mg chrysanthenone, 2 mg camphor, 2 mg ethyl cinnamate and 10 mg piperitone TLC of fraction 3 (Et₂O-petrol, 1 4) gave 5 mg piperitone and 5 mg verbenol and TLC of fraction 4 (Et₂O-petrol, 9 11) 5 mg 4 TLC of fraction 5 (Et₂O-petrol, 9 1) gave 5 mg 3 (R_f 0 52), 3 mg 1 (R_f 0 40) and 5 mg 2 (R_f 0 35) Known compounds were identified by comparing the spectral data, especially the 400 MHz ¹H NMR spectra, with those of

authentic material Due to the small amounts 2 and 3 could not be induced to crystallize though they were homogeneous by ¹H NMR spectroscopy

 4α -Hydroperoxy-desoxyvulgarın (2) (gum) 1 H NMR see Table 1 To 5 mg 2 in 0 5 ml CDCl₃, 20 mg triphenyl phosphine was added After 10 min at room temp the 1 H NMR spectrum had completely changed to that of 1 TLC (Et₂O) gave 1, identical with authentic vulgarin

4-Epi-vulgarin (3) (gum) IR $v_{max}^{CCl_4}$ cm⁻¹ 3600, 3440 (OH), 1790 (γ -lactone), 1690 (C=CC=O), MS m/z (rel int) 264 136 [M]⁺ (6) (calc for $C_{15}H_{20}O_4$ 264 136), 249 [M – Me]⁺ (12), 98 (57), 55 (100)

Acknowledgements—We thank Dr A A Faied, Department of Botany, University of Assuit, Egypt, for identification of the plant material, and M A M thanks the Alexander v Humboldt-Stiftung for a fellowship

REFERENCES

- 1 Khafagy, S M Abdel Salam, M A and El-Ghazooly, M G (1978) Planta Med 30, 21
- 2 Kelsey, R G and Shafizadeh, F (1979) Phytochemistry 18, 1591
- 3 Zalkow, L H, Gordon, M M, Dickinson, C and Gelbaum, L T (1980) Planta Med 39, 265
- 4 Geissman, T A and Ellestad, G A (1962) J Org Chem 27, 1855
- 5 Rybalko, K S and Dolejs, L (1961) Collect Czech Chem Commun 26, 2909
- 6 Khafagy, S M El-Yaleya, M A, Ziesche, J and Bohlmann, F (1984) Phytochemistry 23, 1821
- 7 Villar, A, Zafra-Polo, M C, Nicoletti, M and Galeffi, C (1983) Phytochemistry 22, 777
- 8 Ohno, N, Gershenzon, J, Roane, C and Mabry, T J (1980) Phytochemistry 19, 103
- 9 Bohlmann, F, Zdero, C, King, R M and Robinson, H (1984) Phytochemistry 23, 1979